MUTUAL INTERACTION OF COMPONENTS DURING **MEMBRANE SEPARATION OF GASES**

Petr Seghman, Tomáš Jirout, Lukáš Krátký

Department of Process Engineering Faculty of Mechanical Engineering, Czech Technical University in Prague Technická 4, 166 07 Praha 6

Petr.Seghman@fs.cvut.cz, tel.: +420 739 964 869

EUROPEAN UNION European Structural and Investment Funds Operational Programme research, Development and Education

INTRODUCTION

Membrane operations offer a viable solution for gas improving and separation. Specifically, they offer an effective solution for downstream syngas treatment after biomass gasification before transforming it into valuable compounds. As gasification is one of the perspective solutions for waste-to-fuels and waste-to-chemicals, it is very imporntat to describe the membrane separation process so it can be involved in the technologies.

The product of biomass gasifications consits of four main components – H_2 , CO_2 , CO_2 , CO_3 , CO_4 , along with minors (H_2S , COS, halogens) and possibly N_2 (when using air as gasification agent). A typical composition of woody-biomass air gasification is approx. 5 % H_2 , 15 % CO, 17 % CO₂, 3 % CH₄ and 60 % N₂.

RESULTS

CO₂ **PERMEABILITY**

If only permeabilities of components are taken into account, the CO_2 permeability in all three cases should be very close – 40 % of the mixture is always CO₂ with pure component permeability 343 Barrer and 60 % of the mixture is made up by components with pure components permeability approx. 13 Barrer. See following figures for indication of deviations.

This study presents initial experiments with CH_4 - N_2 - CO_2 mixture to inspect the interaction of the components during multicomponent gas membrane separation.

EXPERIMENTAL SET UP AND METHODS

GAS MIXTURES

For this study, three-component mixture was chosen for the experiments, consisting of methane, nitrogen and carbon dioxide. As CO_2 is the most permeable, its concentration was fixed. The other two components N_2 and CH_4 were chosen as they have similar characteristics when processed in pure form.

Table 1 – Model mixtures used for the study.

#	c _F (CO ₂) [%mol]	c _F (CH ₄) [%mol]	c _F (N ₂)[%mol]
1	40	30	30
2	40	0	60
3	40	60	0

EXPERIMENTAL SETUP

performed laboratory experiments membrane unit Ralex The were on GSU-LAB-200 with interchangable membrane modules. For this study, a hollow fibre polyimide modul of following parameters was used. The unit allows to measure concentrations in each flow, total mass flow in each branch (feed, permeate and retentate) and temperatures. The scheme of the measuring systém is shown in the following figure. In table 2, parameters of the used polyimide membrane module are shown.

Figure 2 – Permeability of CO_2 in different mixtures on molar stagecut. As can be seen, the characteristics deviate for CO₂-CH₄ mixture.

CO₂ RECOVERY

Similarly as in previous case, the recovery of CO_2 differs for mixtures with N_2 and without N_2 . The mixture of CO_2 and CH_4 shows deviation from the trend of mixtures with N₂. However, with increasing permeate pressure the differences decrease.

CO₂ recovery vs. pressure difference $p_{P} = 2 bar$

CO₂ recovery vs. pressure difference $p_{P} = 4 \text{ bar}$

Figure 1 – Scheme of the measuring system. The measured values are mass flow (m_i) , pressures (p_i) and temperatures (T_i) in each flow (F = feed, P = permeate, R = retentate). The gas analyser measures molar concentrations of each component (CO, CO₂ and H_2).

Table 2 – Parameters of the used polyimide hollow fibre module

Fibre length	Fibre diameter	Number of Fib.	Total area
(mm)	(mm)	(-)	(m²)
290	0,188	3000	0,820

USED EQUATIONS AND DEFINITIONS

<u>Pressure difference</u> Δp is defined as $\Delta p = p_R - p_P \quad \text{(bar)}$ where p_R and p_P are pressures in retentate (R) and permeate (P).

 $P_i = \frac{\dot{n}_{i,P} * L}{A * \Delta p}$ <u>Permeability P_i is defined as</u> (Barrer) where n_i is molar flows of component *i* in permeate, L is length of the module, A its area and Δp is press. diff.

 $\Theta = \frac{\dot{n}_{tot,P}}{2}$ (Barrer) <u>Stagecut θ is defined as</u> n_{tot,F} where n_{tot,P} and n_{tot,R} are total molar flows of all components in permeate and retentate flow respectively. Figure 3 – CO₂ recovery for all three mixtures – differences lower for higher permeate pressure.

CO₂ FLOW THROUGH THE MEMBRANE

Another criteria is the amount of CO_2 permeating through the module per second. As can be seen in the following figures, the trend with changing permeate pressure is opposite for mixture with N₂ only. With increasin permeate pressure, the flow of CO_2 increases whereas in mixtures with CH₄ (binary and tertiary), the increasing pressure drop lowers the curves for CO_2 permeating flow. (Lines in figures are just to highlight the trend and have no physical meaning.)

Figure 4 – Total CO₂ flow through the membrane in all three cases. For mixture with N_2 – oposing trend when increasing permeate pressure p_{P} .

CONCLUSIONS AND DISCUSSION

<u>Component recovery</u> R_i is defined as $R_i = \frac{\dot{n}_{i,P}}{\dot{n}_{i,P} + \dot{n}_{i,R}}$ (-)

where $n_{i,P}$ and $n_{i,R}$ are molar flows of component *i* in permeate and retentate flow.

Table 3 – Measured permeabilities of pure components for further evaluation

Component	Carbon dioxide CO ₂	Methane CH ₄	Carbon monoxide CO
Permeability (Barrer)	343 ± 11	13.4 ± 1.1	13.2 ± 1.0

Permeabilities were measured at different permeate pressures (1, 2 and 4 bar) and at different pressure differences (ranging 1-6 bar with 1 bar increments for N₂ and CH₄ and O-1 bar with 0,1 increments for CO₂ As can be seen, nitrogen N₂ and methane CH₄ have very close permeabilities and thus offer interesting comparison when processed in mixtures.

As seen in the figures above, the composition of permeate and the process of multicomponent gas separation using membrane modules is affected by the composition of the feed gas despite its components having similar permeabilities.

From several points of view (permeability and recovery of CO_2), the characteristics were similar for mixtures with all three components /40:30:30) and the mixture with nitrogen only /40:60 N_2). However, for total flow of the CO₂ through the membrane, an anomaly occured when increasing the permeate pressure and the mixture with N₂only showed opposite trend from the other two.

In conclusion:

- the components affect each other during membrane seprataion
- pressure conditions affect the level of interaction (different results for different p_{P})
- more parameters than Permeability of pure components affect the process of separation

This work was supported by the Ministry of Education, Youth and Sports of the Czech Republic under OP RDE grant number CZ.02.1.01/0.0/0.0/16_019/0000753 "Research centre for low-carbon energy technologies," and by Student Grant Competition of CTU as part of grant no. SGS20/118/OHK2/2T/12.