

SUBSTITUTED DIPHENYLAMINO STYRYL BENZENES AS PROMISSIVE MATERIALS WITH TUNABLE INTENZIVE SOLID STATE FLUORESCENCE -**SYNTHETIC APPROACH TO KEY INTERMEDIATE**

Pauk K., Mausová A., Teichmanová, K., Imramovský A.*

Chart of technology of organic compounds, Institute of organic chemistry and technology/Faculty of Chemical Technology, University of Pardubice, Studentská 95, CZ-530 09 Pardubice, Czech Republic

Introduction:

Materials, based on organic conjugated molecules, exhibiting efficient solid-state fluorescence (SSF) have been widely applied in various modern technologies [1-6]. The design of new organic solid-state fluorophores have to bear in mind intermolecular non-radiative decay processes which affect the resulting efficiency of fluorescence in the condensed phase adversely and effective reduction of these processes is essential [7].

Synthesis of target intermediate:

The series of all-trans push-pull end-capped side-diphenyl substituted distyrylbenzenes (DP-DSBs) was prepared by Horner–Wadsworth–Emmons coupling and the fluorescence in polar and non-polar solvents and solid-state was studied. The dependence of the excitation energies and reorganization accompanying excitation on the presence and electronic strength of an acceptor substituent studied were theoretically using time-dependent functional density theory.

Imramovsky

RESEARCH GROUP

Synthesis of DPA-DP-Distyrylbenzenes.

Figure. 1: Series of prepared DP-DSBs.

Fluorescence of studied materials:

Excitation in chloroform Emission in chloroform

Solid-state fluorescence:

Absorption in chloroform:

DFT Calculations:

LUMO = -0.740 eV

0,2	0,2 0,0 300 350 400 450 500 550 600 Wavelength (nm) Wavelength (nm) 0,2 0,0 400 450 500 550 600 Wavelength (nm)								
Compound	λ_A^a (nm)	λ_{A}^{b} (nm)	$arepsilon^{\mathrm{b}}(\lambda_{\mathrm{A}}) \ (\mathrm{l}\cdot\mathrm{mol}^{-1}\cdot\mathrm{cm}^{-1})$	$\lambda_{\mathrm{F}}^{\mathrm{a}}$ (nm)	$\lambda_{\rm F}^{\rm b}$ (nm)	$\left(\begin{array}{c} arPsi_{ m F}^{ m a} \ (\%) \end{array} ight)$	${\displaystyle \oint_{\mathrm{F}}}^{\mathrm{b}}_{\mathrm{(\%)}}$	$ au_{\mathrm{F}}^{\mathrm{a}}$ (ns)	$ au_{\mathrm{F}}^{\mathrm{b}}$ (ns)
DPA-DP-DSB-H	396	395	49 500	461	486	84 ± 5	71 ± 3	1.27	1.53
DPA-DP-DSB-Me	395	394	54 000	458	480	85 ± 3	76 ± 9	1.24	1.54
DPA-DP-DSB-CN	409	408	39 700	494	526	86 ± 4	81 ± 4	1.49	2.01
DPA-DP-DSB-CHO	410	412	49 000	504	593	84 ± 2	60 ± 2	1.55	2.17
DPA-DP-DSB-DCV	454	460	42 300	607	731	79 ± 3	< 1	2.32	1.81

				0.25	31
				0.73	39
DPA-DP-DSB-Me	de l	492	29 ± 4	1.54	58
				8.17	3
				0.82	46
DPA-DP-DSB-CN		541	39 ± 4	1.75	47
				7.03	7
				0.89	15
DPA-DP-DSB-CHO		545	34 ± 4	2.56	71
				7.79	14
			$5.0 \pm$	0.93	33
DPA-DP-DSB-DCV	(====)	662	0.6	2.81	58
	-		0,0	7.68	9

The spectroscopic and photophysical properties of the studied derivatives in toluene (a) and chloroform (b).

Polycrystalline samples under daylight and UV lamp.

Literature:

1. Shimizu M, Hiyama T. Organic Fluorophores Exhibiting Highly Efficient Photoluminescence in the Solid State. *Chem. Asian J.* 2010, *5*, 1516-1531.

—<u></u>__-CN

- 2. Fang HH, Yang J, Feng J, Yamao T, Hotta S, Sun HB. Functional organic single crystals for solid-state laser applications. Laser Photonics Rev. 2014, 8, 687-715.
- 3. Zhu XH, Peng JB, Caoa Y, Roncali J. Solution-processable single-material molecular emitters for organic light-emitting devices. *Chem. Soc. Rev.* 2011, *40*, 3509-3524.
- 4. Liu Z, Zhang G, Zhang D. Molecular materials that can both emit light and conduct charges: strategies and perspectives. *Chem. Eur. J.* 2016, *22*, 462-471.
- Shi Ch, Guo Z, Yan Y, Zhu S, Xie Y, Zhao YS, Zhu W, Tian H. Self-assembly solid-state 5. enhanced red emission of quinolinemalononitrile: optical waveguides and stimuli response. ACS Appl. Mater. Interfaces. 2013, 5, 192-198.
- Wang E, Zhao E, Hong Y, Lam JWY, Tang BZ. A highly selective AIE fluorogen for lipid 6. droplet imaging in live cells and green algae. J. Mater. Chem. B, 2014, 2, 2013-2019.
- 7. Pope M, Swenberg CE. Electronic Processes in Organic Crystals and polymers. 2nd ed. New York. 1999, p. 39-48.

MOs computed using DFT CAM-B3LYP 6-311G(d,p) in vacuum (isovalue = 0.02).

