8th International Conference on Chemical Technology virtual 3. – 5. 5. 2021, Mikulov, Czech Republic

STU FCHPT

EFFECT OF THE SUPPORT ON MANGANESE CARBON CATALYSTS FOR OXIDATION OF CYCLOHEXANONE BY MOLECULAR OXYGEN

> D. Gašparovičová, M. Králik, T. Soták, B. Horváth and M. Hronec Institute of Organic Chemistry, Catalysis and Petrochemistry, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia

Introduction

- Adipic acid, which is used in the production of polyamides, polyesters, and plasticizers, is currently produced mainly by two step oxidation of cyclohexane: (1) catalytic oxidation with air to the mixture of cyclohexanol and cyclohexanone; (2) oxidation with nitric acid.
 - The use of nitric acid in the second step leads to NOx pollution.
- Carbons are high-surface-area materials and offer a wide range of application as adsorbents for various compounds, and in catalysis, either as supports for the active phases, or as catalysts.
- The nature and concentration of surface functional groups of carbon materials may be modified by suitable thermal or chemical post-treatments [1].

Aim

In our work, the catalytic performance of Mnbased carbon catalysts in the liquid phase oxidation of cyclohexanone with molecular oxygen in the solventfree system was studied.

Results and Discussion

Fig.3 Oxidation of cyclohexanone over activated charcoal Norit based catalysts in experiments carried out at 90 °C and 0.35 MPa O₂, 210 min.

Fig.1 Surface functional carbon groups.

Fig.5 Oxidation of cyclohexanone over the 1%Mn/C-d

 \mathbf{O}_2

Catalysts

Commercial carbon

activated charcoal Norit (Fluka) (AC)

carbon Vulcan (carbon black XC72) (C)

Table 1

Oxidation of cyclohexanone over activated charcoal Norit catalysts

	Catalyst	Conversion	Yield of acid (mol %)				
		(%)	Adipic	Glutaric	Succinic	Oxalic	
	AC-d	28	2	0	0	0	
	AC-500	18	3	1	1	0	
2	AC-700	36	7	2	2	0	
ł,	AC-900	45	11	2	1	0	
	AC-d900	49	11	2	2	0	

Reaction conditions: 90 °C, 0.35 MPa, O₂, 150 mg of catalyst, 210 min

Fig.4 Oxidation of cyclohexanone over activated charcoal Norit and carbon black Vulcan supported manganese

catalyst in experiments carried out at 80 °C 175 min, at 90 °C and 100 °C 110 min, at 110 °C and 120 °C 40 min, and 0.35 MPa O₂.

Conclusions

 The treatment of activated charcoal Norit at different temperatures strongly influences the conversion of cyclohexanone and selectivity to diacids.

→ In accordance with literature findings [3], the thermal treatment of active carbon reduces the amount of acidic groups present on its surface and create basic groups such as pyrone type.

Addition of manganese to activated charcoal Norit treated in nitrogen at 900 °C caused a decrease in the catalytic activity and had only minor effect on the adipic acid formation compared to the pure Norit catalysts.

→ On the other hand, adding Mn to demineralized carbon black Vulcan greatly enhanced the reaction rate and formation of adipic acid.

A signifficant influence of reaction temperature on the oxidation of cyclohexanone over Mn based carbon black Vulcan catalyst was observed.

Fig.2 Reactor: glass-lined stainless steel with monitoring of the oxygen consumption

Oxygen pressure:

Reaction temperature:

0.35 MPa

80 − 120 °C

catalysts.

Table 2

Oxidation of cyclohexanone over activated charcoal Norit and carbon black Vulcan supported manganese catalysts

Catalyst	Conversion	Yield of acid (mol %)				
	(%)	Adipic	Glutaric	Succinic	Oxalic	
AC-900	45	11	2	1	0	
1%Mn/AC-900	33	12	2	2	0	
C-d500	32	8	2	2	0	
1%Mn/C-d ^a	46	18	5	3	0	

Reaction conditions: 90 °C, 0.35 MPa, O₂, 150 mg of catalyst, 210 min, ^a110 min

References

[1] Figueiredo J. L., Pereira M. F. R., Freitas M. M. A., Órfao J. J. M., Carbon 37, 1379 (1999). [2] Zou G., Zhong W., Xu Q., Xiao J., Liu C., Li Y., Mao L., Kirk S., Yin D., Catal. Commun. 58, 46 (2015).

[3] Besson M., Gallezot P., Perrard A., Pinel C., Catal. Today 102-103, 160 (2005).

Method of analysis: gas chromatography **Esters of dicarboxylic acids: esterification with** methanol in the presence of concentrated H_2SO_4

Acknowledgement

This work was supported by the Slovak Research and Development Agency under the Contract no. APVV-17-0302.