

SELECTIVE MEERWEIN-PONNDORF-VERLEY REDUCTION OF CINNAMALDEHYDE OVER AI-CONTAINING CATALYSTS

Olga Gorlova, Iva Paterová, Eliška Vyskočilová, Jindřich Dušek, Libor Červený

INTRODUCTION

The aim of this work was to find suitable heterogeneous catalyst for the Meerwein-Ponndorf-Verley (MPV) reduction of cinnamaldehyde to cinnamyl alcohol. The heterogeneous catalysts should serve as an alternative to homogeneous catalysts due to its possible recovery and reuse and simple separation from the reaction mixture.

MPV reduction has been investigated using different heterogeneous catalysts, including hydrous zirconia, hydrotalcites, magnesium-aluminium mixed oxide previously obtained from a layered double hydroxide or magnesium-gallium and magnesium-indium hydrotalcite – like compounds, zeolites, TiO_x/γ -Al₂O₃, metal alkoxides immobilized on mesoporous materials based on silica, aluminosilicates or titanosilicates and metal oxides such as MgO, ZrO₂, Al₂O₃, or ZrO₂ modified by boron or alkaline-earth metal (Mg, Ca, Sr, Ba) to enhance their acid and basic properties in the MPV reduction.

EXPERIMENTAL

- **Reaction conditions:**
- cinnamaldehyde: 3 g
- alumina CG-20

Used catalysts:

Catalyst pretreatment:

 \bullet

• drying at 300 °C at least for 6 hours

Preparation of MOx:

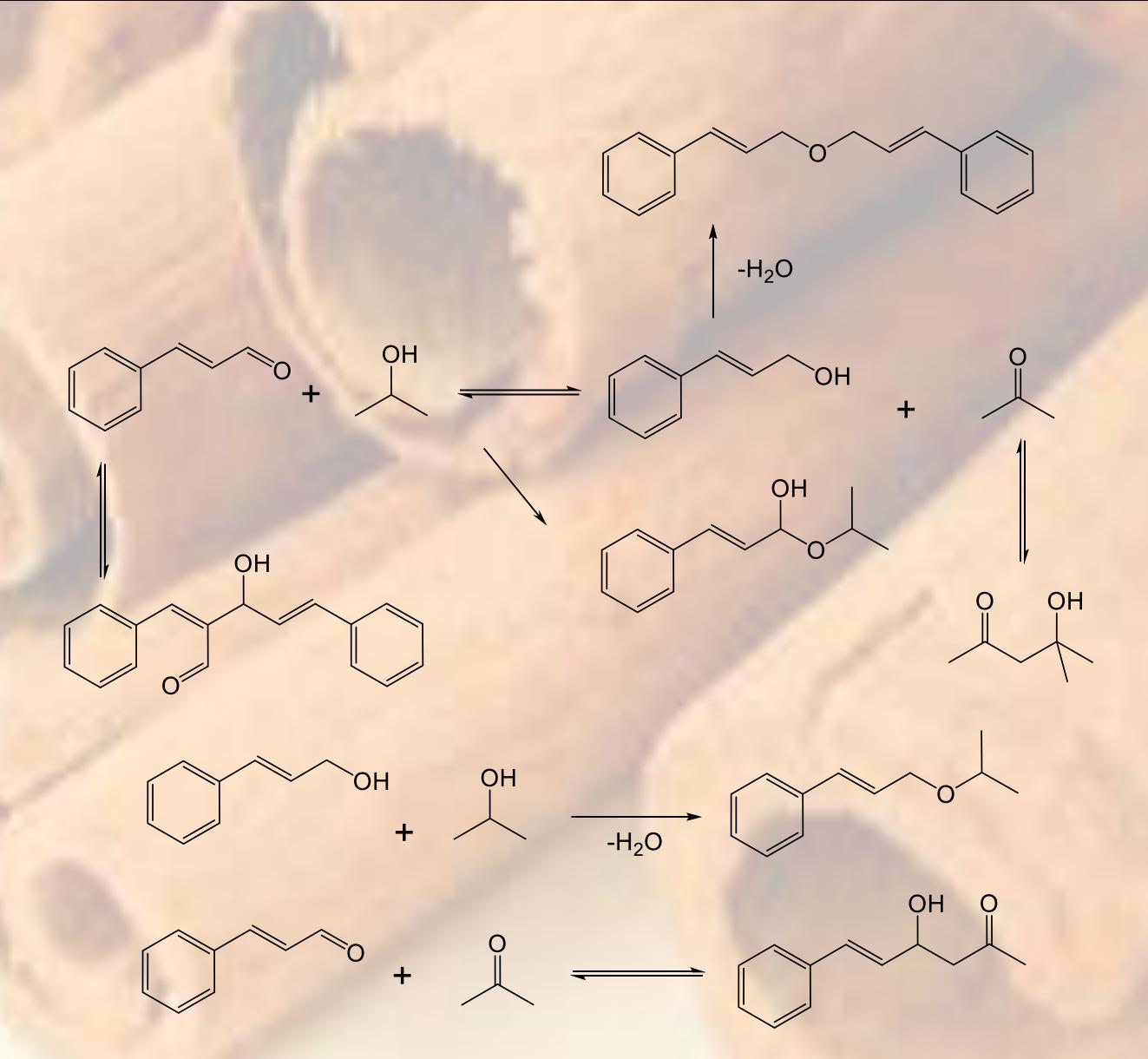
• calcination of the corresponding hydrotalcites at

- propan-2-ol: 30 ml
- catalyst: 3 g \bullet
- reaction temperature: 95 °C
- acid activated aluminas
- commercial type I 504 C
- laboratory-prepared
- aluminosilicate 80/20
- MCM-41
- mixed oxides with different molar • ratio of Mg / Al (MOx)
- rehydrated hydrotalcites with different molar ratios of Mg / Al (rHTx)

Acid activation of alumina (CG-20):

- stirring with 10% HNO₃, 24 h, room temperature
 - filtration, washing and drying at 300 °C for 6 hours

Catalyst regeneration (acid-activated alumina I 504 C):


- washing with propan-2-ol
- oxygen atmosphere (25-85% nitrogen)
- 550 °C for at least 8 hours

500 °C for 6 h

Process of preparation of rHTx:

- 1. preboiled demineralized water
- sparging by nitrogen for 15 minutes 2.
- addition of calcined hydrotalcite 3.
- 4. stirring for 90 minutes and sparging by nitrogen
- 5. evaporation of water under an argon atmosphere

RESULTS

Parameter	Alumina	Acid activated	Acid activated	Aluminosilicate	MCM-41	MO2,5
	CG-20	alumina I 504 C	alumina (prepared)			
Time for the 30 %	12	6	6	7		
conversion [h]	12	0	0	1	_	
Conversion after 12 h	30	64	68	38	4	20
[%]	50	04	00	30	4	20
Selectivity after 12 h	71	77	71	60		60
[%]	71		71	68	-	62
Conversion after 24 h	40	70	70	50		24
[%]	42	70	72	50	_	24
Time for 100 %						
conversion [h]	-	55		-	-	-

Table 1: Comparison of materials used for MPV reduction of cinnamaldehyde to cinnamyl alcohol

Fig.2: Reaction scheme for MPV reduction of cinnamaldehyde by propal-2-ol and formation of by-products

Table 2: Comparison of catalysts based on hydrotalcite – like compounds used for MPV reduction of cinnamaldehyde to corresponding alcohol

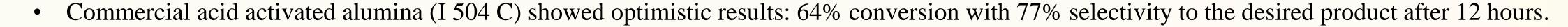

Catalyst	MO2,5	MO3	MO3,5	rHT2,5	rHT3	rHT3,5
Conversion after 3 h [%]	12	8	7	4	3	6
Selectivity after 3 h [%]	57	69	65	56	42	44


 Table 3: Recycling of acid activated alumina I 504 C

Reuse number	0	1	2	3
Conversion after 3 h [%]	56	45	47	46
Selectivity after 3 h [%]	75	70	68	69

CONCLUSION

Heterogeneous alumina-based materials were used as catalysts for MPV reduction of cinnamaldehyde to cinnamyl alcohol.

