AMINE-FUNCTIONALIZED POROUS POLYMERS FOR SELECTIVE CO₂ ADSORPTION

Kateřina SETNIČKOVÁ, Karel JEŘÁBEK, Tomáš STRAŠÁK, Karel SOUKUP

Institute of Chemical Process Fundamentals of the Czech Academy of Science, v.v.i., Department of Bioorganic Compounds and Nanocomposites, Rozvojová 2/135, CZ-165 02 Prague 6 – Suchdol, Czech Republic; Tel.: +420220390268, e-mail: setnickova@icpf.cas.cz

INTRODUCTION

The increasing release of CO₂ to the atmosphere due to human activities has initiated considerable interest in the development of new materials and technologies for CO₂ capture. A cheap alternative solution represents a design and synthesis of microporous organic polymers, porous materials generally possess low skeletal density, in which the precise control over the material's chemical composition and textural properties can lead to a significant enhancement in gas storage [1]. This work is focused on the synthesis of hypercrosslinked vinylbenzyl chloride (VBC) - divinylbenzene (DVB) microporous material and its application for CO₂ capture and gas separation.

(1)

(4)

Sample	(m ² g ⁻¹)	(m ² g ⁻¹)	$(\text{mm}^{3}_{\text{liq}}\text{g}^{-1})$	(mm ³ _{liq} g ⁻¹)	(g cm ⁻³)	Sample	(%)	(%)	(%)	(%)	(%)
HCLPP	757	310	408	226	1.15	HCLPP	93.49	0.40	1.66	-	0.05
HCLPP - EDA	283	93	157	97	1.18	HCLPP - EDA	82.96	0.07	8.43	-	0.09
HCLPP - DETA	277	132	159	76	1.16	HCLPP - DETA	85.09	0.05	8.76	-	0.07
HCLPP - DENDRIMER	616	194	341	218	1.69	HCLPP - DENDRIMER	90.62	0.29	5.18	0.19	0.20

Figure 1 SEM analysis.

 S_{BET} specific surface area calculated by the BET method; S_{meso} specific surface area of mesopores (*t*-plot method);

 V_{tot} specific total volume of pores; V_{micro} specific volume of micropores (*t*-plot method); ρ_{He} skeletal density (Helium pycnometry)

EXPERIMENTAL

Gas uptake calculation

N

The adsorption isotherms measurement was based on the volumetric method [2]. The gas amount adsorbed in the material is calculated from the balance as the difference of the initial and the equilibrium amounts:

$$N_{(adsorbed)} = N_{(gas initially)} - N_{(rest gas in equilibrium)}$$

$$N_{(adsorbed)} = \frac{p_1 V_1 - p_{eq} (V_1 + V_2 - V_x)}{RT}$$
(2)

The ideal gas state eq. (3) is used to the moles in gas phase calculation (N gas moles number):

$$=\frac{pV}{RT}$$
(3)

The adsorbed amount is related to the material weight *m* to determine the adsorbed phase concentration, *q*:

$$q = \frac{N_{(adsorbed)}}{m}$$

RESULTS

Adsorption apparatus

Figure 2 Apparatus for gas adsorption measurement in materials.

Table 3 Gas adsorption performance of materials

Sample	<i>CO₂</i> (mmol g⁻¹)*	<i>CH₄</i> (mmol g⁻¹)*	N₂ (mmol g⁻¹)*	H₂ (mmol g⁻¹)*	O 2 (mmol g ⁻¹)*
HCLPP	1.01	0.31	0.090	0.021	0.012
HCLPP - EDA	0.82	0.13	0.029	0.015	0.047
HCLPP - DETA	0.91	0.13	0.033	0.012	0.042
HCLPP - DENDRIMER	1.10	0.24	0.063	0.017	0.089

Figure 3 The CO_2 adsorption isotherms in the porous polymer materials at temperature 25 °C.

(a) adsorption (full points) and desorption (empty points),

(b) adsorption related to the specific surface area of porous polymers.

CONCLUSION

* Amount of captured gases in porous material at 1 bar.

Table 4 Selectivity performance of materials

Sample	CO₂/CH₄ (-)	CO₂/N₂ (-)	CO₂/H₂ (-)	0 ₂ /N ₂ (-)	CH ₄ /H ₂ (-)
HCLPP	3.3	11.2	48.1	0.1	14.8
HCLPP - EDA	6.3	28.3	61.3	1.6	8.7
HCLPP - DETA	7.0	27.6	75.8	1.3	10.8
HCLPP - DENDRIMER	4.6	17.5	64.7	1.4	14.1

New porous polymeric sorbent with a high apparent surface area showing selective CO_2 adsorption over CH_4 and N_2 was prepared by suspension polymerization of vinylbenzyl chloride and divinylbenzene, followed by modification with polyamines and dendrimer containing amino groups resulting in an enhanced CO_2/CH_4 , CO_2/N_2 and CO_2/H_2 selectivity. Produced polymer represents a promising organic porous material for CO_2 capture from gas mixtures. We plan to use the developed porous polymer and its amine-functionalized forms as fillers for preparation of mixed matrix membranes with improved CO_2/CH_4 and CO_2/N_2 separation performance.

The financial support of the Czech Science Foundation (grant N° 19-23760J) and the ERDF/ESF project "UniQSurf-Centre of Biointerfaces and Hybrid Functional Materials" (no. CZ.02.1.01/0.0/0.0/17_048/0007411) is greatly appreciated.

REFERENCES

- [1] YL. Luo, BE. Tan, Porous Materials for Carbon Dioxide Capture Book Series: Green Chemistry and Sustainable Technology (2014) 143-180.
- [2] P. Veverka, K. Jeřábek, Mechanism of hypercrosslinking of chloromethylated styrenedivinylbenzene copolymers, Reactive & Functional Polymers 41 (1999) 21–25.