MODELLING PARTICLE SIZE CHARACTERISTICS AND SPECIFIC ENERGY DEMAND FOR KNIFE-MILLED BEECH CHIPS AT DIFFERENT MOISTURES

CZECH TECHNICAL UNIVERSITY

Kratky L., Jirout T., Dostal M.

Czech Technical University in Prague, Faculty of Mechanical Engineering, Department of Process Engineering, Technicka 4, 166 00, Prague 6, Czech Republic Lukas.Kratky@fs.cvut.cz, +420-224-352-550

EUROPEAN UNION **European Structural and Investment Funds Operational Programme research**, **Development and Education**

1. INTRODUCTION

- > Particle size reduction increases specific surface area, being crucial for intensive mass transfer during biochemical or thermochemical biomass treatment.
- > Mechanical size reduction is a costly operation that can cover up to 33 % of the total electrical demand being for a complex technology.
- > Little information to quantify the effect of biomass moisture on specific energy demand during the size reduction of lignocellulosic biomass.
- > Specific energy requirement typically listed as single values, poor models available.

2. MATERIALS AND METHODS

- \blacktriangleright beech chips with moistures 0.50 ± 0.03 wt %, 7.50 ± 0.01 wt %, 15.9 ± 0.1 wt %
- > the laboratory knife mill SM300 equipped with a three-bladed rotor
 - the peripheral speed of revolution 20.4 m s⁻¹ (3000 min⁻¹)
 - \circ screen sieves of square openings with the sizes of 6 mm (SC6), 4 mm (SC4), 2 mm (SC2), and trapezoidal ones of sizes 1 mm (SC1), and 0.75 mm (SC0.75)

biomass	initial/final particle size (mm)	moisture (wt %)	machine	specific energy requirement (kWh t ⁻¹)	reference	
hard wood	22.4/1.6	4-7		130.0	Cadoche and Lopéz [1]	
	22.4/2.5	4-7	knife mill	80.0		
	22.4/6.3	4-7		25.0		
	19.05/1.6	6		130.0	Himmel et al. [2]	
	19.05/2.5	6	hammer mill	80.0		
	19.05/6.4	6		27.0		
rye straw	22.4/1.6	6.9	hammer mill	27.1		
	22.4/1.6	12		42.8		
corn stover	22.4/3.2	4-7	knife mill	20.0	Cadoche and Lopéz [1]	

[1] L. Cadoche, G.D. López, Biological Wastes 1989, 30, 153 [2] M. Himmel, M. Tucker, J. Baker, Biotech. Bioeng. 1985, 15, 39

AIMS:

1. To experimentally identify the effect of biomass characteristics (moisture, initial particle size) and knife mill variables (screen size) on specific energy requirement.

2. To define and calibrate a model that allows predicting specific energy requirement for knife milling of beech chips at different moistures.

3. RESULTS AND DISCUSSION

- > Each experimental run characterised by the weight of sample *m* processed at time t, energy demand e and particle size characteristics.
- > The gained experimental results of screen sieve analysis regressed by RRSB model.
- > The characteristic parameters of RRSB models were identified.

EXPERIMENTAL METHOD:

- The sample was initially analysed in its weight and particle size distribution.
- The milling of the sample under the given process variables of the knife mill.
- The milled sample was finally weighed and analysed in particle size distribution.

PARTICLE SIZE ANALYSIS:

- The standard screen sieve method for biomass according to ASABE S424.1.
- The Rosin-Rammler-Sperling-Bennet (RRSB) model regressed experimentally reached cumulative mass perceptual proportions of individual runs.
- The characteristic particle size D_{50} was calculated for each sample before and after milling.

$$D_F = D_P \cdot \left[-ln(1-F)\right]^{\frac{1}{n}}$$

$$e = \frac{\int_0^t P_{AM} dt - \int_0^t P_{AI} dt}{m}$$

F (wt %) - cumulative mass fraction smaller than a given characteristic particle size D_F (mm) D_{P} (mm) - characteristic particle size at the cumulative mass fraction 63.2 wt % n (-) - index of polydispersity

ctive power during biomass milling at a given time t (s) - active power during the idle state at the same time t (s)

IDENTIFYING SPECIFIC ENERGY REQUIREMENT

- Measuring active power in time-related a milled amount of sample.
- The active state = active power during the milling of the given sample.
- The idle state = no material was reduced in size -> passive resistances.

		characteris	ual runs			
	initial	SC6	SC4	SC2	SC1	SC0.75
x = 0.5 % wt.						
D _P (mm)	4.24	0.97	0.82	0.48	0.40	0.37
n (-)	1.73	2.96	2.31	2.48	2.95	3.06
D ₅₀ (mm)	3.09	0.85	0.69	0.41	0.36	0.32
x = 7.5 % wt.						
D _P (mm)	4.24	1.00	0.80	0.64	0.55	0.47
n (-)	1.73	1.82	1.81	2.74	2.27	2.42
D ₅₀ (mm)	3.09	0.82	0.66	0.56	0.46	0.40
x = 16.0 % wt.						
D _P (mm)	4.24	1.39	0.89	0.66	0.42	0.36
n (-)	1.73	1.98	1.98	2.50	2.97	2.68
D ₅₀ (mm)	3.09	1.04	0.73	0.57	0.37	0.31

point – experimental value, curve – fitted RRSB model

- The Rittinger constant is affected by strength yield of beech chips that vary with moisture.
- The higher moisture, the higher Rittinger constant.
 - If biomass is dry, the only shear is used to reduce particles in size.
 - If biomass moisture is increasing, biomass particles become elastic. -> mutual effect of shear and attrition -> higher energy demand.

4. CONCLUSION

> The effect of wood chips moisture on specific energy requirements was studied.

The wood chips evinced brittle behaviour.

> The Rittinger law was found to precisely fit the experimentally identified values of specific energy requirement in dependence on particle size characteristics and biomass moisture.

> The Rittinger constant is significantly affected moisture content.

> This model was defined predicting specific energy demand on biomass moisture and particle sizes with the precision $R^2 = 0.84$.

$$e = C_R \cdot \left(\frac{1}{D_{500UT}} - \frac{1}{D_{50IN}}\right)$$

 $C_R(X=0.5 \%) = 25.95 \text{ kWh mm } \text{t}^{-1}$ $C_R(X=7.5 \%) = 54.12 \text{ kWh mm } t^{-1}$ $C_R(X=15.9 \%) = 58.20 \text{ kWh mm } \text{t}^{-1}$

Validity ranges: wood chips, moisture of 0.5-15.9 wt %, initial particle size D_{50IN} of 0.36-3.09 mm, final particle size D_{500UT} of 0.31-1.04 mm, and size reduction in knife mill with biomass flowrates 25-128 kg h⁻¹ m⁻¹ of the total length of installed blades in pair, peripheral rotor velocity 20.4 m s⁻¹.

ACKNOWLEDGEMENT

2.0

This research was supported by the Ministry of Education, Youth and Sports of the Czech Republic under OP RDE grant number CZ.02.1.01/0.0/0.0/ 16_019/0000753 "Research centre for low-carbon energy technologies"...