CARBIDATION OF Al_2O_3 SUPPORTED Co AND Fe CATALYSTS FOR FISCHER-TROPSCH SYNTHESIS AND THEIR CHARACTERIZATION

Svobodová E.¹, Gholami Z.¹, Tišler Z.¹

¹ORLEN UniCRE a.s, Areál Chempark 2838, Záluží 1, 436 70 Litvínov, Czech Republic

Fischer-Tropsch synthesis is used to produce long chain hydrocarbons and light olefins from syngas, which can be generated from fossil and renewable sources. Light olefins are one of the key chemicals for industry, since a number of their derivates are used daily in our lives. Fischer-Tropsch to olefin (FTO) is a process for direct light olefins production through a reaction often catalyzed by cobalt and/or iron. Iron based catalysts are less expensive than cobalt, have higher selectivity to olefins as well as resistance to contaminants. Alumina support is widely used to improve mechanical and structural properties of such catalysts. In this work, three sets of catalysts are presented with various metal loading and carbidation temperature, to evaluate the differences in characterization. Three precursors (5%Co/Al₂O₃, 5%Fe/Al₂O₃ and 2.5%Fe2.5%Co/Al₂O₃) were prepared in advance by incipient wetness impregnation of Al₂O₃ spheres of 2,5 mm. Prior to the carbidation step, the precursors were pretreated at 200 °C for 12 h under the flow of N₂. To synthesize the carbide catalysts, 4 g of the prepared precursor were exposed to the gas containing 20 % CH₄ in H₂ with the flowrate of 300 cm³/min for 3 hours at different temperatures in the range of 300 °C to 800 °C by temperatureprogrammed reduction in a tubular quartz reactor. After the carbidation step, the catalysts were purged with N_2 for 30 min, and the passivated for 2 h under 1% O_2 in Ar. Detailed characterization of these materials was carried out by elemental analysis, X-ray Diffraction (XRD), and Scanning Electron Microscopy (SEM). Catalytic performance in the FTO reaction will be further described in upcoming publications.

Acknowledgments: The publication is a result of the project which was carried out within the financial support of the Ministry of Industry and Trade of the Czech Republic with institutional support for long-term conceptual development of research organisation. The result was achieved using the infrastructure included in the project Efficient Use of Energy Resources Using Catalytic Processes (LM2018119) which has been financially supported by MEYS within the targeted support of large infrastructures.